If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10t^2+5t=-10
We move all terms to the left:
-10t^2+5t-(-10)=0
We add all the numbers together, and all the variables
-10t^2+5t+10=0
a = -10; b = 5; c = +10;
Δ = b2-4ac
Δ = 52-4·(-10)·10
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{17}}{2*-10}=\frac{-5-5\sqrt{17}}{-20} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{17}}{2*-10}=\frac{-5+5\sqrt{17}}{-20} $
| (5)^(2x+1)=14 | | 4-x=-3.2 | | 3/3000(x)=0.25 | | 4-x=-3,2 | | 2n+3-7n+12=53 | | 3(x-2)+9=5x-2(-3+x) | | 65=1/2h(8+5) | | 12(x-1)-3x=3(3x-4) | | 6x+129=180 | | –4(6x+3)=–12(x+10) | | 6·(18−x)=54 | | 5x+129=180 | | -5(r+8)=-59 | | (5x/6)+(2x/2)=9 | | -5(r+8=-59 | | x²=42+x | | (2w+1)w=45 | | 12g=8g-1+10 | | 12x+19x-6+3=-9x+3-6 | | -8y-11=9y+23 | | 15(h-3)=108 | | 7+w/5=32 | | 5=-9-6p/4 | | 6x+12x-9-8x10+x=0 | | 2476099=6x+1 | | 4m=-11.88 | | 5x+93=180 | | -4x+5-6(x-1)=-(3x-4)-6x+6 | | 4(5k+3)+3(-4k-4)=48 | | 11x-78=21 | | 4x+50=357 | | x²-5x-14=0 |